NAINI PAPERS LIMITE Ethically Firm. Environmentally Strong.

www.nainigroup.com

BEST PRACTICES ADOPTED IN CHEMICAL RECOVERY

- Power Saving
- Steam Saving
- Water Saving
- Environment

POWER, STEAM & WATER SAVING

S.No.	Power Saving Initiative	Implemented	Power Saving Per day (KWh)	Financial Gain Lac/Annum
1	VFD trial done on Evaporator Vacuum Pump For Power saving.	Oct-2023	720	18.9
2	SIR installation in Recovery boiler ESP-	June -24	500	12.60

S.No.	Steam Saving Initiative	Implemented	Steam Saving Per day (MT)	Financial Gain Lac/ Annum
1	Recovery Boiler MP Steam PRV valve provision was done to save steam.	Jan-2023	3	14.2
2	Recovery Boiler Condensate Recovery improved from 65 % to 69 %.	Sept-2023	5	42.9

S.No.	Water Saving Initiative	Implemented	Steam Saving Per day (MT)	Financial Gain Lac/ Annum
1	ODF wwl washing started in place of Hot water.	Feb-2024	150	1
2	Recovered Fiber line, SWAS panel & Sampling steam Condensate	Sept-2023	45	7.2

- Vacuum Pump was run by Soft Starter.
- Motor run at full RPM.
- Power consumption was 70 Kw/Hr.

AFTER

- ✤ Vacuum Pump run by VFD.
- Motor RPM reduced 25% to achieve same vacuum (650-660 mmHq).
- Power Saved 720 Kw/day

Power Consumption = **70 Kw/Hr.** RPM = **1440 RPM**

EXPENSES OF VFD INSTALLATION IN VACUUM PUMP

- Cost of VFD Rs 2.50 Lac,
- Installation Cost- Rs o.o2Lac,
- Total Cost Rs 2.52 Lac
 SAVINGS
- Power saving = 30 Kw/Hrs.
- Cost of power = 6.0 Rs/Kwh
- Cost Saving = 4320 Rs/ Day
 - = 129600 Rs/ Month
 - = 15.55 Rs,Lac/annum

Payback - Less than 2 month

AFTER IMPROVEMENT

• New 1.5" Control valve provide with pressure control loop (11.0 Kg/cm2 to 3.5 Kg/cm2) in Black liquor firing window shuttering line.

Payback - Less than one month

- Control valve Size: 1.5" (Cost-0.90Lac),
- One Pressure transmitter (Cost-0.52 Lac),
- Installation (Cost-0.05Lac)
- Total Investment Cost = Rs 1.47 Lac (Approx.)

SAVINGS

- MP Steam Saved = 4 Ton per day (Approx.)
- MP Steam cost = 1350 per Ton (Boiler no.4)
- Total Saved Cost = 4 Ton x @1350 = Rs.5400/Day
- Total Saved Cost = Rs.5400 x 30 = Rs.1,62000/Month

DM water & LP steam saving

LP steam consumption reduced 13 MT/day.

Steps taken

- 1. Evaporator steam condensate sampling water optimised
- 2. RB SWAS Panel sampling water diverted to DM water tank
- 3. Fiber line steam condensate recovered

- DM water saved/day = 597-515 = 82 m3/day
- DM water cost/m3 = INR 25
- Total Amount saved in DM water = 25*82*350 = 7.17 Lac/annum

- LP Steam saved/day = 219-203 = 16.0 MT
- LP Steam cost/MT = INR 1350
- Total Amount saved in LP Steam= 16*1350*350= 75.6 Lac/annum

Total Saving:- INR 82.8 Lac per annum

REDUCTION OF LP STEAM IN CAUSTICIZING

Causticizing LP Steam Cons. (Stage 1 & 2)						
Month	No. of Days (Operational)	Total WL Prod (in MT)	Avg. WL Prod. (TPD)	Total LP Steam Cons. (in MT)	Avg. LP Steam Cons. (TPD)	Specific LP Steam Cons. (MT/MT)
		E	Before Process seq	uence changeover		
Jan-23	28	3766.41	134.51	3228	115.29	0.857
Feb-23	28	3650.46	130.37	3086	110.21	0.845
Mar-23	31	3974.35	128.20	3543	114.29	0.891
		-	After Process sequ	lence changeover		
Apr-23	30	4125.64	137.52	3089	102.97	0.749
May-23	31	4195.09	135.33	2514	81.10	0.599
Jun-23	15	2069.70	137.98	1225	81.67	0.592
						1
Average WL F	Production per month				3942.39	MT/Month
LP steam consumption before process sequence changeover					3285.67	MT/Month
LP steam consumption after process sequence changeover					2801.50	MT/Month
Reduction in LP steam consumption					484.17	MT/Month
Cost of LP steam			1450	Rs/MT		
Cost saved d	Cost saved due to reduction in LP steam				7,02,042	Rs/Month
		Annual ea	vina		84 24 500	Rs/Annum

LP Steam Consumption (Kg/MT - WL)

PROCESS IMPROVEMENT

1. OPTI DISC FILTER PERFORMANCE

What	Target	Actual	How
Sector cloth changed of ODF filter after 2.5 Years	8 months	2.5 years	 Reduced Acid Washing Sequence Optimised pressure inside filter Maintained minimum differential pressure as required
White liquor Conversion Yield %	92.0	94.0	 Optimization filtration parameters Improvement in washing sequence Reduction of silica % in input CGL
ODF quality performance > 200% at 100% MCR	< 20 ppm	< 10 ppm	 Reduction of carbonate in 1st stage Effective Dregs removal by Filter press. Retention time improved in Slacking & Causticizing.

- Selection of Fuel Ratio (FO: Natural Gas)
- Effective control of feed rate.
- Improve mud dryness more than 72%
- Mud Purity improved as CaCO3 more than 90%
- Product Lime LOI less than 2.2%

• Achieve Burnt Lime Purity Average >80%

ENVIRONMENTAL MEASURES

Implemented Dust collection system near lime crusher

- Reduce Air Pollution
- Collect the lime dust which scattered in environment during lime crushing

Implemented the Fume Reduction system

- Reduce Air Pollution
- Condense of Flue gas Water vapour @ 10m³/Hr.
- Reduction in Flue gas Volumetric discharge(16000m³/Hr.)

Installed SIR system in Recovery Boiler ESP

- Improved Collection Efficiency more than 99.5%.
- Reduced spark rate.
- Compact design.
- Reduction in Power Consumption

INNOVATION: DESILICATION

- Spurger System develop to carryout Desilication of Green Liquor.
- Causticizer taken in line to enhance retention time for pH dropped.
- Desilicated Green Liquor stored in separate clarifier for precipitation of silica.
- Installed New reactor tank to start batch process of de-silicate Green Liquor.

	Unit	Before Desilication	After Desilication
Mud Cake Purity (As CaCO ₃)	%	86	90
Mud Cake Dryness	%	64.5	66
Burnt Lime Silica	%	6.8	4.25
Burnt Lime Purity	%	65.9	76.9
Mud Cake Silica	%	6	3.9

Achievement:-Silica Reduction – 60% (By Weight)

Thank You